给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:
(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
(3)从森林中删除选取的两棵树,并将新树加入森林;
(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。 [2]
来自
看图更易理解,,
与是的算法 从某个顶点出发,首先访问这个顶点,然后找出刚访问这个的第一个未被访问的邻,然后再以此邻为顶点,继续找它的下一个新的顶点进行访问,重复此步骤,直到所有结点都被访问完为止。 从某个顶点出发,首先访问这个顶点,然后找出这个结点的所有未被访问的邻接点,访问完后再访问这些结点中第一个邻接点的所有结点,重复此方法,直到所有结点都被访问完为止。 可以看到两种方法最大的区别在于前者从顶点的第一个邻接点一直访问下去再访问顶点的第二个邻接点;后者从顶点开始访问该顶点的所有邻接点再依次向下,一层一层的访问。